P4P 法相机姿态标定精度分析

朱帆^{1,2*},于芳苏²,吴易明²,郝冲^{1,2}

1中国科学院大学,北京 100049;

2中国科学院西安光学精密机械研究所光学定向与测量技术研究室,陕西西安 710119

摘要 为便于在相机标定系统设计前,对标定误差进行预估,分析影响标定误差的因素,指导相机标定系统工程设计,针对 P4P 相机标定算法,提出新的算法模型。解决原算法中方位角、俯仰角及横滚角各姿态角相互耦合的问题,使姿态角求解仅与相机内参和特征点图像坐标相关。在此基础上,建立误差分析模型,从理论上分析图像定位误差、畸变、主点误差、焦距误差、特征点位置误差对姿态角标定的影响,并进行仿真和实验。实验结果表明,标定精度仿真结果和实验值一致,误差分析模型准确有效。该模型能够指导标定系统工程设计,具有较高的工程应用价值。 关键词 机器视觉;摄影测量;单目视觉;相机标定

中图分类号 TB144; TB922 **文献标识码** A

doi: 10.3788/AOS201838.1115005

Analysis of Attitude Calibration Precision of P4P Camera

Zhu Fan^{1,2*}, Yu Fangsu², Wu Yiming², Hao Chong^{1,2}

¹University of Chinese Academy of Sciences, Beijing 100049, China; ²Research Laboratory of Optical Orientation and Measurement Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China

Abstract In order to estimate the calibration error, analyze the factors affecting the calibration error, and guide the camera calibration system engineering design before the calibration system design, we propose a new algorithm model for the P4P camera calibration algorithm. This model solves the problem that the azimuth, pitch angle and roll angle are coupled to each other, and makes the attitude angle solution only related to the camera internal parameters and the image coordinates of feature points. On this basis, the model of error analysis is built which can theoretically analyze the influence of image position errors, aberration, principal point, focal length, and locations of feature points on calibration of attitude angles. The simulation and experiment are carried out. The conclusion hints that the data of simulation and experiment of calibration accuracy are consistent and the error analysis model is accurate and valid. The model can guide the design of calibration system and has great engineering application value.

Key words machine vision; photogrammetry; monocular vision; camera calibration OCIS codes 150.0155; 150.1135; 150.3045

1 引 言

相机标定是摄影测量研究领域的热点问题之一,是实现高精度摄影测量的基础^[1-4],相机姿态参数的标定精度严重影响着三维重建和视觉测量的精度^[5-6]。相机标定技术通常用于三个方面:一是用于摄影测量的相机标定,为多相机交会测量或结构光辅助测量提供先验信息^[7];二是测量目标相对于相机的位姿,如机器臂上相机对被抓取物体的位姿测

量;三是用于相机相对于目标的位姿测量,如飞机起 飞前对地面合作目标的测量,以确定飞机初始方位 角度,飞机落地前对地面合作目标的测量,以引导飞 机降落等^[8]。这三个方面的测量原理相同,只是用 途或基准坐标系的选取不同而已。

在一些资料中,对标定原理有比较详尽的描述。 目前常用的方法是 PnP标定技术,PnP标定技术利 用图像上特征点的二维图像坐标和特征点在靶标坐 标系中的三维坐标计算相机坐标系和靶标坐标系之

收稿日期: 2018-05-03; 修回日期: 2018-06-27; 录用日期: 2018-07-12

基金项目:国家重点研发计划项目(2016YFB1102500)

^{*} E-mail: zhufan@opt.ac.cn

间的位姿关系^[9-10],表述为相机坐标系与靶标坐标 系的转换矩阵和平移向量。在 PnP 标定方法中,当 n < 3时, PnP问题有无穷多解^[11-12], 因而 PnP问题 的研究主要针对 3 个特征点以上的情况, P3P 标定 法中,解不唯一,通常要采用其他方法判断多解的合 理性,以获取正确解。n 取5以上时,存在异面点, 可获取唯一解,但不是解析解,且异面特征点靶标制 作困难,特征点三维坐标测量过程复杂、误差较大。 n 取4时,若4点共面,利用坐标系转换矩阵的单位 正交性,仍可求得唯一的解析解。由于共面靶标制 作简单,特征点坐标定位方便,故 P4P 为常用的相 机标定方法。为了消除图像提取误差和计算误差,在 专门的相机标定场合,将靶标共面4点扩展到多点, 利用最小二乘法提升标定精度,如棋盘格靶标、多点 阵靶标等,实际上是 P4P 法的一种延伸。本研究只对 最基本的4点法进行研究分析,多点共面情况类似。

由于 P4P 相机标定算法都以矩阵形式解算,各 个姿态角相互耦合,各因素对姿态标定精度的影响 分离起来比较困难,在目前调研到的跟相机标定精 度相关文献中,基本包括了两类问题:第一类是对标 定算法本身进行研究,对算法本身进行创新和改进: 第二类是对光照、靶标平面性、标定图片数量、相机 参数及图像处理误差等因素进行实验分析。在第一 类问题中,陈小林[13]提出了采用最小二乘法进行单 目视觉姿态角优化求解,来提高姿态测量精度的方 法;周婧等[14]提出了基于自适应算法的单目视觉姿 态解算算法,加速了算法计算速度,提高了测量精 度;周润等[15]提出了加权迭代正交算法,使系统对 特征点的位置测量误差适应性更高,姿态解算精度 更高,稳健性更好;Martin 等^[16]提出了利用空间异 面点,在相机焦距未知的情况下,解算相机位姿的算 法。在第二类问题中,凡芳等[17]以实验的形式,验 证了光照形式、标定板平面性及特征点位置精度对 相机姿态标定的影响;刘长英等[18]对像点坐标提取 精度、特征点位置精度及特征点分布范围等因素对 相机姿态标定精度的影响进行了实验分析。综上所 述,目前尚未调研到建立完整的误差理论分析模型 的国内外资料,即相机姿态标定误差只能事后测量 或实验分析,无法在设计前精确评估系统参数和各 误差源对相机姿态测量的影响,使相机姿态测量系 统的设计具有很大的不确定性。

本文在 P4P 标定算法理论基础上,建立对图像 定位误差、畸变等误差因素的理论分析模型,研究这 些因素对最终姿态角标定精度的影响,并进行仿真 分析和实验,对深度理解 P4P 标定算法、设计标定 系统参数具有一定的理论指导意义。

2 姿态标定算法模型

定义图像坐标系左上点为坐标原点,横向为x轴,纵向为y轴,图像坐标系以像素数为单位。如 图 1 所示,定义相机坐标系 $O_c X_c Y_c Z_c$ 和靶标坐标 系 OXYZ,相机坐标系原点在光心处, Z_c 轴为光 轴, X_c 轴与图像x 方向一致, Y_c 与图像y 方向一 致,坐标系符合右手定则。为简化分析,设靶标坐标 系上 4 个特征点成正方形分布,靶标坐标系原点设 在 4 个特征点成正方形分布,靶标坐标系原点设 在 4 个特征点中心处,以 4 点所在平面为 XOY 平 面,即为靶标坐标系 Z=0 平面,X 轴沿特征点 1 和 特征点 2 的连线,Y 轴沿特征点 1 和特征点 4 的连 线, X_c 与 X, Y_c 与 Y, Z_c 与 Z 轴均成锐角,坐标系 均符合右手定则。

对物空间一点,若该点在相机坐标系中的坐标 值为(X_c,Y_c,Z_c),则成像公式可表述为

$$\begin{cases} \frac{x - C_x}{F_x} = \frac{X_c}{Z_c} \\ \frac{y - C_y}{F_y} = \frac{Y_c}{Z_c} \end{cases},$$
(1)

式中:x、y 为物点在图像坐标系上的像素坐标; (C_x , C_y)为光轴与探测器交点的像素坐标; F_x 和 F_y 为焦距与单像元尺寸的商,通常,像元尺寸为正 方形,故 F_x 和 F_y 相等。记

$$\begin{cases} k_{xi} = \frac{x_i - C_x}{F_x} = \frac{X_{Ci}}{Z_{Ci}}, \\ k_{yi} = \frac{y_i - C_y}{F_y} = \frac{Y_{Ci}}{Z_{Ci}}, \end{cases}$$
(2)

式中:i 为靶标上特征点序号,取值为1~4;x_i、y_i

为特征点对应像点的图像坐标; X_G, Y_G, Z_G为特征 点对应的相机坐标系坐标。

设靶标坐标系原点在相机坐标系中的坐标为 (T_x, T_Y, T_Z) ,靶标坐标系绕 Z 轴旋转 A_Z ,再绕 X 轴旋转 A_x ,再绕 Y 轴旋转 A_Y 后与相机坐标系重 合,在这种旋转顺序下, A_Z 为相机坐标系相对于靶 标坐标系的方位角, A_x 为相机坐标系相对于靶标 坐标系的俯仰角, A_Y 为相机坐标系相对于靶标坐 标系的横滚角,则靶标坐标系中的坐标向相机坐标 系中转换的关系为

$$\begin{bmatrix} X_{c} \\ Y_{c} \\ Z_{c} \end{bmatrix} = \mathbf{R} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} T_{x} \\ T_{y} \\ T_{z} \end{bmatrix} = \mathbf{R}_{y}\mathbf{R}_{x}\mathbf{R}_{z} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} T_{x} \\ T_{y} \\ T_{z} \end{bmatrix},$$
(3)

式中, R_X 、 R_Y 、 R_Z 分别表示绕 X 轴、Y 轴和 Z 轴的 旋转矩阵,表达式为

$$\begin{cases} \mathbf{R}_{X} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos A_{X} & \sin A_{X} \\ 0 & -\sin A_{X} & \cos A_{X} \end{bmatrix} \\ \mathbf{R}_{Y} = \begin{bmatrix} \cos A_{Y} & 0 & \sin A_{Y} \\ 0 & 1 & 0 \\ -\sin A_{Y} & 0 & \cos A_{Y} \end{bmatrix} .$$
(4)
$$\begin{aligned} \mathbf{R}_{Z} = \begin{bmatrix} \cos A_{Z} & \sin A_{Z} & 0 \\ -\sin A_{Z} & \cos A_{Z} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

通过 R_Y 、 R_X 、 R_Z 表达式,计算出R的表达式:

$$\frac{|X_1|}{T_z} = \frac{|Y_1|}{T_z} = \frac{|X_2|}{T_z} = \frac{|Y_2|}{T_z} = \frac{|X_3|}{T_z} = \frac{|Y_3|}{T_z} = \frac{|Y_4|}{T_z} = \frac{|Y_4|}{T_z} = K_{\circ}$$
(6)

将(3)式代入(2)式,并结合(6)式,得到

$$\begin{aligned} -Kr_{0} - Kr_{1} + Kk_{x1}r_{6} + Kk_{x1}r_{7} + \frac{T_{x}}{T_{z}} &= k_{x1} \\ -Kr_{3} - Kr_{4} + Kk_{y1}r_{6} + Kk_{y1}r_{7} + \frac{T_{y}}{T_{z}} &= k_{y1} \\ Kr_{0} - Kr_{1} - Kk_{x2}r_{6} + Kk_{x2}r_{7} + \frac{T_{x}}{T_{z}} &= k_{x2} \\ Kr_{3} - Kr_{4} - Kk_{y2}r_{6} + Kk_{y2}r_{7} + \frac{T_{y}}{T_{z}} &= k_{y2} \\ Kr_{0} + Kr_{1} - Kk_{x3}r_{6} - Kk_{x3}r_{7} + \frac{T_{x}}{T_{z}} &= k_{x3} \\ Kr_{3} + Kr_{4} - Kk_{y3}r_{6} - Kk_{y3}r_{7} + \frac{T_{y}}{T_{z}} &= k_{y3} \\ - Kr_{0} + Kr_{1} + Kk_{x4}r_{4} - Kk_{x4}r_{7} + \frac{T_{x}}{T_{z}} &= k_{x4} \\ - Kr_{3} + Kr_{4} + Kk_{y4}r_{6} - Kk_{y4}r_{7} + \frac{T_{y}}{T_{z}} &= k_{y4} \end{aligned}$$

$$(7)$$

(7)式的矩阵形式为

								$\int r_0$]			
$\left[-K\right]$	-K	0	0	Kk_{x1}	Kk_{x1}	1	0]	r_1		$\begin{bmatrix} k_{x1} \end{bmatrix}$		
0	0	-K	-K	Kk_{y^1}	Kk_{y^1}	0	1	r_3		k_{y1}		
K	-K	0	0	$-Kk_{x^2}$	Kk_{x^2}	1	0	r_4		k_{x2}		
0	0	K	-K	$-Kk_{y^2}$	Kk_{y^2}	0	1	r_{6}		k_{y^2}		(0)
K	K	0	0	$-Kk_{x3}$	$-Kk_{x^3}$	1	0	r_7		k_{x3}	0	(8)
0	0	K	K	$-Kk_{y^3}$	$-Kk_{y^3}$	0	1	T_{X}		k_{y3}		
-K	K	0	0	Kk_{x4}	$-Kk_{x4}$	1	0	$\overline{T_{Z}}$		k_{x4}		
0	0	-K	K	$Kk_{_{\mathcal{Y}^4}}$	$-Kk_{y^4}$	0	1	T_{Y}		k_{y^4}		
								T_z				

其解为

$$\begin{bmatrix} r_{0} \\ r_{1} \\ r_{3} \\ r_{4} \\ r_{6} \\ r_{7} \\ \frac{T_{X}}{T_{Z}} \\ \frac{T_{Y}}{T_{Z}} \end{bmatrix} = \begin{bmatrix} \frac{1}{K} \frac{k_{x1}k_{x3}k_{y2} - k_{x2}k_{x3}k_{y1} - k_{x1}k_{x4}k_{y2} + k_{x2}k_{x4}k_{y1} - k_{x1}k_{x3}k_{y4} + k_{x2}k_{y3} - k_{x3}k_{y2} + k_{x4}k_{y1} + k_{x3}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{x2}k_{y3} - k_{x1}k_{x3}k_{y2} - k_{x1}k_{x2}k_{y4} + k_{x2}k_{x4}k_{y1} + k_{x1}k_{x3}k_{y4} - k_{x3}k_{x4}k_{y1} - k_{x2}k_{x4}k_{y3} + k_{x3}k_{x4}k_{y2} \\ - \frac{1}{K} \frac{k_{x1}k_{x2}k_{y3} - k_{x1}k_{x3}k_{y2} - k_{x1}k_{y2}k_{y4} + k_{x2}k_{y3}k_{y3} - k_{x3}k_{y2} + k_{x4}k_{y1} + k_{x3}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2}k_{y3} - k_{x2}k_{y1}k_{y3} - k_{x1}k_{y2}k_{y4} + k_{x2}k_{y3} - k_{x3}k_{y1}k_{y4} + k_{x4}k_{y1}k_{y3} + k_{x3}k_{y4}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2}k_{y3} - k_{x3}k_{y1}k_{y2} - k_{x1}k_{y2}k_{y4} + k_{x4}k_{y1}k_{y2} + k_{x1}k_{y3}k_{y4} - k_{x4}k_{y1} + k_{x3}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2} - k_{x2}k_{y1} - k_{x1}k_{y4} + k_{x2}k_{y3} - k_{x3}k_{y2} + k_{x4}k_{y1} + k_{x3}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2} - k_{x2}k_{y1} - k_{x1}k_{y4} + k_{x2}k_{y3} - k_{x3}k_{y2} + k_{x4}k_{y1} + k_{x3}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2} - k_{x2}k_{y1} - k_{x1}k_{y4} + k_{x2}k_{y3} - k_{x3}k_{y2} + k_{x4}k_{y1} + k_{x3}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2} - k_{x2}k_{y1} - k_{x1}k_{y3} + k_{x3}k_{y2} + k_{x4}k_{y1} + k_{x3}k_{y4} - k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2} - k_{x2}k_{y1} - k_{x1}k_{y3} + k_{x2}k_{y3} - k_{x3}k_{y4} + k_{x4}k_{y3} \\ - \frac{1}{K} \frac{k_{x1}k_{y2} - k_{x2}k_{y1} - k_{x1}k_{y4} + k_{x2}k_{y3} - k_{x3}k_{y4} + k_{x4}k_{y3} - k_{x4}k_{y4} \\ - \frac{k_{x1}k_{x2}k_{y3} - k_{x2}k_{y1} - k_{x1}k_{y4} + k_{x2}k_{y3} - k_{x3}k_{y4} + k_{x4}k_{y1} + k_{x2}k_{y3} - k_{x3}k_{y4} \\ - \frac{k_{x1}k_{x2}k_{y3} - k_{x2}k_{y1}k_{y1} - k_{x1}k_{y2} + k_{x2}k_{y3} - k_{x3}k_{y4} + k_{x4}k_{y3} \\ - \frac{k_{x1}k_{x2}k_{y3} - k_{x2}k_{y1}k_{y1} + k_{x2}k_{y3} - k_{x1}k_{y2}k_{y3} - k_{x3}k_{y4} + k_{x2}k_{y3} \\ - \frac{k_{x1}k_{x2}k$$

由于转换矩阵R	と単位	位正	交降	车, 故	て有	
$\begin{bmatrix} r_2 \\ r_5 \\ r_8 \end{bmatrix}$]=	$\begin{bmatrix} r_{0} \\ r_{3} \\ r_{6} \end{bmatrix}$	\times	$\begin{bmatrix} r_1 \\ r_4 \\ r_7 \end{bmatrix}$	0	(10)

至此,转换矩阵 **R** 的所有元素求解完毕, $r_0 \sim r_7$ 均 可表示成 $(k_{xi}, k_{yi})|_{i=1\sim4}$ 的函数。 根据(5)式和(9)式,可知方位角为

$$A_{z} = -\arctan \frac{r_{3}}{r_{4}} = \arctan \left(\frac{k_{x1}k_{y2}k_{y3} - k_{x2}k_{y1}k_{y3} - k_{x1}k_{y2}k_{y4} + k_{x2}k_{y1}k_{y4} - k_{x3}k_{y1}k_{y4} + k_{x4}k_{y1}k_{y3} + k_{x3}k_{y2}k_{y4} - k_{x4}k_{y2}k_{y3}}{k_{x2}k_{y1}k_{y3} - k_{x3}k_{y1}k_{y2} - k_{x1}k_{y2}k_{y4} + k_{x4}k_{y1}k_{y2} + k_{x1}k_{y3}k_{y4} - k_{x4}k_{y1}k_{y3} - k_{x2}k_{y3}k_{y4} + k_{x3}k_{y2}k_{y4}} \right) \circ$$

$$(11)$$

同理,可求得橫滚角 A_Y 和俯仰角 A_x ,在这些 公式中, A_x 、 A_Y 、 A_Z 不再相互耦合,而是只包含了 与4个特征点主光线相关的(k_{xi} , k_{yi}) $|_{i=1\sim4}$,为进 一步分析姿态解算误差因素奠定了基础。为了节省 篇幅,本研究只列出了 A_Z 的表达式,并只推导 A_Z 的误差评估模型, A_Y 和 A_x 的误差分析类似。

3 姿态标定误差评估模型

3.1 Az 测量精度影响因素

从(11)式可以看出,观测量为 k_{xi} 和 k_{yi} ,被测量为 A_z ,记观测量的误差为 Δk_{xi} 和 Δk_{yi} ,其物理意义是表征特征点成像主光线与光轴的夹角测量误差。

由(2)式可以看出, $k_{xi} n k_{yi}$ 是像素坐标 $x_i n y_i$ 、图 像主点 $C_x n C_y$ 、焦距误差 $F_x n F_y$ 的函数(由于 像元尺寸精度比较高,故可认为 $F_x n F_y$ 仅受镜头 焦距影响),而影响像素坐标 $x_i n y_i$ 的因素包括特 征点图像定位误差、镜头畸变和特征点位置误差。

1) 图像定位误差

图像定位误差为图像判别的随机误差,直接表现为(2)式中 x 和 y 的像素坐标误差,该误差大小与合作目标形式和具体图像提取算法有关。设图像定位误差引起的 k_{xi} 和 k_{yi} 误差表示为 Δk_{nxi} 和 Δk_{nyi} ,根据(2)式,有

$$\begin{cases} \Delta k_{nxi} = \frac{\partial k_{xi}}{\partial x} \Delta x_i = \frac{1}{F_x} \Delta x_{ni} \\ \Delta k_{nyi} = \frac{\partial k_{yi}}{\partial x} \Delta y_i = \frac{1}{F_y} \Delta y_{ni} \end{cases}, \quad (12)$$

式中, Δx_{ni} 和 Δy_{ni} 为 x和 y方向的图像定位误差。 由于图像定位误差是随机的,结合(11)式,图像定位 误差对 A_z 的影响可采用平方和再开方的方式进行 计算:

$$\Delta A_{Z} \mid_{n} = \sqrt{\sum_{i=1}^{4} \left(\frac{\partial A_{Z}}{\partial k_{xi}} \Delta k_{nxi} \right)^{2} + \sum_{i=1}^{4} \left(\frac{\partial A_{Z}}{\partial k_{yi}} \Delta k_{nyi} \right)^{2}} .$$
(13)

2) 畸变

畸变是与光学镜头设计相关的误差,是实际像 点偏离理想像点的距离,误差大小随像点偏离主点 (C_x, C_y) 的距离的改变而改变,在 (C_x, C_y) 处畸变 为0,实际像点沿理想像点与 (C_x, C_y) 的连线偏离 理想像点。畸变有两种形式,一种是沿连线偏向 (C_x, C_y) ,一种是沿连线偏向图像边缘,镜头设计完 成后,偏离方向即是固定的。在(2)式中,畸变也是 像素坐标 x 和 y 定位误差的一种,设畸变引起的 k_{xi} 和 k_{yi} 误差表示为 Δk_{Exi} 和 Δk_{Eyi} :

$$\begin{cases} \Delta k_{\text{Exi}} = \frac{\partial k_{xi}}{\partial x} \Delta x_{i} = \frac{1}{F_{x}} \Delta x_{\text{Ei}} \\ \Delta k_{\text{Eyi}} = \frac{\partial k_{yi}}{\partial y} \Delta y_{i} = \frac{1}{F_{y}} \Delta y_{\text{Ei}} \end{cases}, \quad (14)$$

式中 $\Delta x_{\rm Ei}$ 、 $\Delta y_{\rm Ei}$ 为畸变引起的图像坐标变化,其对 A_z 的影响采用求和方式计算:

$$\Delta A_{Z} \mid_{E} = \sum_{i=1}^{4} \frac{\partial A_{Z}}{\partial k_{xi}} \Delta k_{Exi} + \sum_{i=1}^{4} \frac{\partial A_{Z}}{\partial k_{yi}} \Delta k_{Eyi} \,.$$
(15)

3) 主点误差

主点误差是 (C_x, C_y) 参数的误差,即是姿态解算时,参与计算的主点 (C_x, C_y) 和镜头实际光轴与

探测器交点的偏离量,根据(2)式,主点误差 ΔC_x 和 ΔC_y 对 k_{xi} 和 k_{yi} 的影响可表示为 Δk_{Cxi} 和 Δk_{Cyi} ,有

$$\begin{cases} \Delta k_{Cxi} = \frac{\partial k_{xi}}{\partial C_x} \Delta C_x = -\frac{1}{F_x} \Delta C_x \\ \Delta k_{Cyi} = \frac{\partial k_{yi}}{\partial C_y} \Delta C_y = -\frac{1}{F_y} \Delta C_y \end{cases}$$
(16)

 ΔC_x 和 ΔC_y 在系统内参输入和装配完毕后,其 大小和方向均是固定的,结合(11)式,主点误差对 A_z 的影响可采用求和方式计算:

$$\Delta A_{Z} \mid_{C} = \sum_{i=1}^{4} \frac{\partial A_{Z}}{\partial k_{xi}} \Delta k_{Cxi} + \sum_{i=1}^{4} \frac{\partial A_{Z}}{\partial k_{yi}} \Delta k_{Cyi}$$
(17)

4) 焦距误差

焦距误差在内参输入和装配完毕后即确定,同 理,焦距误差 ΔF_x 和 ΔF_y 对 k_{xi} 和 k_{yi} 的影响表示为 Δk_{Fxi} 和 Δk_{Fyi} :

$$\begin{cases} \Delta k_{Fxi} = \frac{\partial k_{xi}}{\partial F_x} \Delta F_x = -\frac{(x_i - C_x)}{F_x^2} \Delta F_x = -\frac{k_{xi}}{F_x} \Delta F_x \\ \Delta k_{Fyi} = \frac{\partial k_{yi}}{\partial F_y} \Delta F_y = -\frac{(y_i - C_y)}{F_y^2} \Delta F_y = -\frac{k_{yi}}{F_y} \Delta F_y \end{cases}$$
(18)

 ΔF_x 和 ΔF_y 在系统内参输入和装配完毕后, 大小和方向均是固定的,焦距误差对 A_z 的影响采 用求和方式计算:

$$\Delta A_{Z} \mid_{F} = \sum_{i=1}^{4} \frac{\partial A_{Z}}{\partial k_{xi}} \Delta k_{Fxi} + \sum_{i=1}^{4} \frac{\partial A_{Z}}{\partial k_{yi}} \Delta k_{Fyi} \circ$$
(19)

5) 特征点位置误差

特征点位置标定完毕后,可认为该标定值是一 个理想值,实际特征点位置与该理想值存在一定偏 差,理想的 k_{xi} 和 k_{yi} 表征该理想位置所成图像主光 线与光轴的夹角,而实际的 k_{xi} 和 k_{yi} 由于位置误差 的影响,与理想的 k_{xi} 和 k_{yi} 存在偏差,在俯仰角和横 滚角为小角度的前提下,将物方定位误差归一化到 像方来考虑,该误差表示为 Δk_{Dxi} 和 Δk_{Dyi} ,约为

$$\begin{cases} \Delta k_{\text{Dx}i} = \frac{\Delta X_i}{T_z} \\ \Delta k_{\text{Dy}i} = \frac{\Delta Y_i}{T_z} \end{cases}, \tag{20}$$

式中 ΔX_i 和 ΔY_i 为特征点位置误差。

虽然特征点加工、装配完毕后,其位置误差就已 经是固定的,但4个合作目标位置误差是不相关的, 故特征点位置误差对 A_z 的影响可采用平方和再开 方的方式计算:

$$\Delta A_{Z} \mid_{\mathrm{D}} = \sqrt{\sum_{i=1}^{4} \left(\frac{\partial A_{Z}}{\partial k_{xi}} \Delta k_{\mathrm{D}xi} \right)^{2} + \sum_{i=1}^{4} \left(\frac{\partial A_{Z}}{\partial k_{yi}} \Delta k_{\mathrm{D}yi} \right)^{2}} \,. \tag{21}$$

3.2 Az 总误差

先估算标定系统图像定位误差 Δx_{ni} 和 Δy_{ni} 、畸 $\overline{ \phi } \Delta x_{Ei}$ 和 Δy_{Ei} 、主点误差 ΔC_x 和 ΔC_y 、焦距误差

 ΔF_x 和 ΔF_y 及特征点位置误差 ΔX_i 和 ΔY_i ,再根据(12)、(14)、(16)、(18)和(20)式计算这些误差源 所引起的 Δk_{xi} 和 Δk_{yi} ,根据(13)、(15)、(17)、(19)、 (21)式计算各误差源对测量值的影响 $\Delta A_z |_{n}$ 、 $\Delta A_z |_{E}$ 、 $\Delta A_z |_{C}$ 、 $\Delta A_z |_{F}$ 、 $\Delta A_z |_{D}$,总误差计算公 式为

$$\Delta A_{Z} = \sqrt{(\Delta A_{Z} \mid_{n})^{2} + (\Delta A_{Z} \mid_{E})^{2} + (\Delta A_{Z} \mid_{C})^{2} + (\Delta A_{Z} \mid_{F})^{2} + (\Delta A_{Z} \mid_{D})^{2}},$$

(22)

由于 A_z 表达式(11)式较长,对其求偏导的表达式也较长,故本研究未描述各误差项(13)、(15)、(17)、(19)、(21)式和总误差(22)式的具体表达式,读者可采用 Matlab 等计算软件自行求解。

4 姿态标定测量精度仿真与实验研究

为了验证姿态标定误差评估模型的正确性,首 先,设计实验系统,并对实验系统中的误差源进行估 计,将实验系统参数和误差源代入到姿态标定误差 评估模型中,对各误差项和总误差进行计算。然后, 按设计的实验系统,进行单误差项符合性仿真和总 误差符合性实验,根据误差项与总误差评估值和实 验值的符合程度,证明姿态标定误差评估模型的正 确性。

4.1 实验系统参数设计与误差预估

设合作目标的分布为 450 mm×450 mm,特征点

1~4的坐标、相机内参和其他系统参数如表1所示。

表1 系统参数输入

Table 1 Input of system parameters

Serial number	Item	Value
1	Coordinate of feature point 1 /mm	(-225,-225,0)
2	Coordinate of feature point 2 $/\mathrm{mm}$	(225,-225,0)
3	Coordinate of feature point 3 $/mm$	(225,225,0)
4	Coordinate of feature point 4 $/\mathrm{mm}$	(-225,225,0)
5	Focal length /mm	35
6	Pixel size /(μ m \times μ m)	5.5×5.5
7	(C_X, C_Y) / pixel	(1024.5,1024.5)
8	Resolution of camera /(pixel×pixel)	4096×4096
9	$(T_X, T_Y, T_Z) / mm$	(100,100,2000)

各误差源估计值如表 2 所示。

	表 2 误差源估计值	
Table 2	Estimate values of error source	2:

Serial number	Item	Value
1	Errors of image orientations Δx_{ni} and Δy_{ni} /pixel	0.3
2	Aberration Δx_{Ei} and $\Delta y_{Ei} / \%$	0.1
3	Error of principal point ΔC_x and ΔC_y /pixel	10
4	Error of focal length ΔF_x and ΔF_y	91
5	Errors of locations of feature points ΔX_i and ΔY_i /mm	0.1

根据表 1 的系统参数和表 2 的误差源估计,对应相机不同姿态 A_x 、 A_y 、 A_z ,按误差评估模型,计算各误差项评估值及总误差评估值,计算结果如表 3 所示。

从表3可以看出,对标定精度影响最大的是图像定位误差和特征点位置精度,在标定系统设计中, 必须采用精确的特征点提取算法,并保证靶标加工 和标校的准确性;主点误差对测量精度影响较小,即 使该误差达到10 pixel,带来的误差不大于 0.0079°, 可以设定图像中心坐标为主点坐标,无需进行严格标定;畸变对测量结果的影响趋近于0,由于畸变具 有方向性,靶标基本位于视场中心,畸变造成的各特 征点成像位置变化对测量结果的影响相互抵消,在 表2中,畸变的估计量均按0.1%设定,实际镜头的 畸变与镜头视场角相关,不是固定值,抵消效果减 弱,对姿态角测量的影响变大;焦距误差对测量结果 的影响趋近于0,可以在标定系统中按镜头焦距设 计值设定相机焦距参数。

					• • • • • • • • • • • • • • • • • • • •					
				Ta	able 3 Erro	r items				(°)
					А	ttitude				
Fanon	A_Z	0	5	5	-5	-5	30	30	-30	-30
Error	A_X	0	3	-3	3	-3	5	— 5	5	-5
	A_{Y}	0	3	3	-3	-3	5	5	-5	-5
$\Delta A_Z \mid_n$		0.0200	0.0201	0.0200	0.0202	0.0200	0.0301	0.0301	0.0305	0.0302
$\Delta A_Z \mid_{\rm E}$		0	0	0	0	0	0	0	0	0
$\Delta A_Z \mid_{C}$		0	-0.0047	-0.0047	0.0047	0.0047	-0.0079	-0.0079	0.0079	0.0079
$\Delta A_{Z}\mid_{\rm F}$		0	0	0	0	0	0	0	0	0
$\Delta A_Z \mid_{\mathrm{D}}$		0.0106	0.0107	0.0106	0.0107	0.0106	0.0109	0.0109	0.0111	0.0110
ΔA_Z		0.0226	0.0233	0.0231	0.0233	0.0231	0.0330	0.0330	0.0334	0.0331

4.2 单误差项评估符合性仿真分析

误差评估模型中,包括了对 $\Delta A_z|_{n}$ 、 $\Delta A_z|_{E}$ 、 $\Delta A_z|_{C}$ 、 $\Delta A_z|_{F}$ 、 $\Delta A_z|_{D}$ 5个单误差项的评估,本研 究选取图像定位误差项 $\Delta A_z|_{n}$ 进行重点分析,以验 证误差评估模型对单误差评估的正确性。

按表1设定系统参数,相机姿态角 $A_x = 5^{\circ}$ 、 $A_{\rm Y} = 5^{\circ}$ 、 $A_{\rm Z} = 30^{\circ}$ 时,相机对4个特征点 P_1 、 P_2 、 P_{3} 、 P_{4} 所成的像素定位理论上应为(381.357, 1080.685) (1605.487,374.791) (2337.195,1613.724) (1074.699,2329.641),对各像素坐标叠加一0.3 或 0.3 的随机数,模拟 0.3 pixel 的图像定位误差,再按 叠加图像定位误差之后的像素坐标,进行相机姿态 角解算(数据太多,此处不一一列举解算结果)。观 察多次解算结果可知,当像素点 P_1 、 P_2 、 P_3 、 P_4 坐 标取值分别为(381.657,1080.985)、(1605.187, 374.491),(2337.495,1613.424),(1074.399,2329.941) 时,测量结果取最大值,Az为 30.0303°;当像素点 P_1 、 P_2 、 P_3 、 P_4 坐标取值分别为(381.057,1080.385)、 (1605.787, 375.091), (2336.895, 1614.024), (1074.999, 2329.341)时,测量结果取最小值,Az为29.9697°。 误差绝对值均为 0.0303°, 与理论计算值 0.0301°具 有很高的一致性。证明误差评估模型对单误差的评 估有效。

4.3 总误差评估符合性实验分析

按表 1 系统参数,架设验证实验,实验平台如 图 2 所示。靶标为 450 mm×450 mm 分布的圆形 合作目标,以圆形中心为特征点,相机架设在三维旋 转台上,三维转台吊装,方位转台(Z 轴转台)安装在 最上层,其次是俯仰转台(X 轴转台),最底层安装 横滚转台(Y 轴转台),相机吊装在横滚转台上,三维 转台各轴系两两正交。这种安装顺序保证了各轴系 转台的旋转角度满足(3)式所描述的相机坐标系与 靶标坐标系之间的转换关系,使解算角度与旋转角 度在物理意义上具有一致性。其中,方位转台精度 为 0.001°,俯仰和横滚转台精度为 0.01°。靶标架设 于相机正下方,以质心法进行特征点图像提取,按 P4P 法解算相机姿态,以 $A_z = 0^\circ, A_x = 0^\circ, A_y = 0^\circ$ 为测量零位,转动三维转台,三维转台的设置值记为 A_{z0}, A_{x0} 和 A_{y0} , P4P 法解算的方位角记为 A_z ,按 $\Delta A_z = \max |A_z - A_{z0}|$ 计算测量误差,测量结果如 表 4 所示。

表 4 测量结果

Table 4 Results of measurements	Table 4	Results of	f measurements	(`)
---------------------------------	---------	------------	----------------	-----	---

Serial number	A_{X0}	A_{Y_0}	A_{Z^0}	Measuring value A_Z	ΔA_Z
1	0	0	0	0	0
2	3	3	5	5.021	0.021
3	-3	3	5	4.982	0.018
4	3	-3	-5	-5.019	0.019
5	-3	-3	-5	-4.980	0.020
6	5	5	30	30.029	0.029
7	-5	5	30	29.972	0.028
8	5	-5	-30	-30.025	0.025
9	-5	-5	-30	-29.972	0.028

误差源估计值是按测量系统设计和装调水平预 估的,虽然与实际误差源存在一定偏差,但偏差不 大,实际测量结果与仿真结果的一致性能够表征误 差模型的正确性。从表 4 可以看出,当方位角为 ±5°时,误差实测值最大为 0.021°,误差仿真值最大 为 0.0233°;当方位角为±30°时,误差实测值最大为 0.029°,误差仿真值最大为 0.0330°,实测值与仿真值 符合性较好,说明误差评估模型有效。

5 结 论

本研究就 P4P 相机姿态标定算法进行理论分 析,在简化理论模型的基础上,将 P4P 算法按传统 的矩阵形式,表示为姿态角的直接计算公式,从而消 除算法中姿态角计算相互耦合的问题,使姿态角仅 与相机内参和特征点的图像坐标相关。在此基础 上,以方位角为例,建立各误差因素对姿态角测量误 差的评估模型,并进行仿真和实验分析,结果表明, 误差理论分析结果和实验值相符,误差模型有效。 该误差模型的建立,能够指导相机姿态测量系统的 设计,具有一定的工程应用价值。

参考文献

- [1] Zhang Z Y, Zhu L, Huang X H, et al. Five-point relative orientation based on forward intersection[J]. Acta Optica Sinica, 2015, 35(1): 0115001.
 张征宇,朱龙,黄叙辉,等.基于前方交会的5点相 对定向[J].光学学报, 2015, 35(1): 0115001.
- [2] Sun N, Zhang L Y, Ye N, et al. Calibration of binocular stereo measurement system based on calibration cross[J]. Acta Optica Sinica, 2012, 32(4): 0412001.
 孙楠,张丽艳,叶南,等. 基于十字靶标的双目立体

测量系统标定[J].光学学报, 2012, 32(4): 0412001.

- [3] Liu Z, Shang Y N. Novel calibration method for stereo vision sensor using flexible target[J]. Acta Optica Sinica, 2013, 33(3): 0315001.
 刘震,尚砚娜. 立体视觉传感器的一种灵活靶标新标 定方法[J]. 光学学报, 2013, 33(3): 0315001.
- [4] Zhang Z Y, Huang S J, Luo C, et al. Nonlinear distortion correction of camera based on coplanar condition equations [J]. Acta Optica Sinica, 2012, 32(1): 0115002.
 张征宇,黄诗捷,罗川,等.基于共面条件的摄像机 非线性畸变自校正 [J].光学学报, 2012, 32(1): 0115002.
- [5] Wong K H, Yu Y K, Fung H Y, *et al*. Robust and efficient pose tracking using perspective-four-point

algorithm and Kalman filter [C] // 2017 International Conference on Mechanical, System and Control Engineering (ICMSC 2017), 2017: 240-244.

- [6] Zhang B S, Zhang Q Z, Wang Y S, et al. The method of solving the non-coplanar perspective-fourpoint (P4P) problem [C] // Proceedings of the 33rd Chinese Control Conference, 2014: 1039-1043.
- [7] Wang Y, Yuan F, Jiang H, et al. High precision pose calculation of space target based on three linear array CCD[J]. Acta Optica Sinica, 2018, 38(5): 0515004.
 王艳, 袁峰, 姜宏, 等. 基于三线阵 CCD 空间目标的 高精度位姿解算[J].光学学报, 2018, 38(5): 0515004.
- [8] Su J D, Qi X H, Duan X S. Plane pose measurement method based on monocular vision and checkerboard target[J]. Acta Optica Sinica, 2017, 37(8): 0815002.
 苏建东,齐晓慧,段修生.基于单目视觉和棋盘靶标 的平面姿态测量方法[J].光学学报, 2017, 37(8): 0815002.
- [9] Chen Y, Lin J R, Gao Y, et al. A hybrid of vision and inclination sensor method for estimating relative pose[J]. Acta Optica Sinica, 2015, 35(12): 1212003.
 陈洋,林嘉睿,高扬,等.视觉与倾角传感器组合相对位姿测量方法[J].光学学报,2015,32(12): 1212003.
- [10] Chen P, Hu G D, Liu X J. Camera pose estimation based on virtual control points[J]. Chinese Journal of Lasers, 2012, 39(11): 1108003.
 陈鹏,胡广大,刘晓军.基于虚拟控制点的像机姿态 测量算法[J].中国激光, 2012, 39(11): 1108003.
- [11] Wang Z C, Dai M, Li G, et al. Apparatus design for surveying relative angular translation of airborne optoelectronic platform [J]. Chinese Journal of Lasers, 2013, 40(9): 0908007.
 王子辰,戴明,李刚,等. 机载光电平台相对角位移 测量系统设计[J]. 中国激光, 2013, 40(9): 0908007.
- [12] Wu F C, Hu Z Y. A linear method for the PnP problem[J]. Journal of Software, 2003, 14(3): 682-688.
 吴福朝,胡占义. PnP问题的线性求解算法[J]. 软 件学报, 2003, 14(3): 682-688.
- [13] Chen X L. Research of attitude calculation of single camera visual system [J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 45-48.
 陈小林.单目视觉系统的姿态解算算法研究[J].仪器仪表学报, 2014, 35(6): 45-48.
- [14] Zhou J, Gao Y H, Liu C Y, et al. Attitude calculation of single camera visual system based on adaptive algorithm[J]. Optics and Precision Engineering, 2012, 20(12): 2796-2803.

周婧,高印寒,刘长英,等.基于自适应算法的单目 视觉系统的姿态解算[J].光学精密工程,2012, 20(12):2796-2803.

- [15] Zhou R, Zhang Z Y, Huang X H. Weighted orthogonal iteration algorithm for camera pose estimation [J]. Acta Optica Sinica, 2018, 38(5): 0515002.
 周润,张征宇,黄叙辉.相机位姿估计的加权正交迭代算法[J].光学学报, 2018, 38(5): 0515002.
- [16] Bujnak M, Pajdla T, Kukelova Z. A general solution to the P4P problem for camera with unknown focal length[C] // 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2008: 10140097.
- [17] Fan F, Wang Z W, Liu S Y, et al. Analysis of factors on errors of the CCD camera calibration [J]. Experiment Science and Technology, 2016, 14(6): 14-31.
 凡芳, 王振伟, 刘双印,等. 面向视觉测量的相机标 定误差分析 [J]. 实验科学与技术, 2016, 14(6): 14-31.
- [18] Liu C Y, Gao Y H, Che R S. Analysis of measurement uncertainty of single camera vision measurement system[J]. Chinese Journal of Mechanical Engineering, 2008, 44(7): 75-78.
 刘长英,高印寒,车仁生.单目视觉测量系统不确定 度的分析[J]. 机械工程学报, 2008, 44(7): 75-78.